免费下载书籍地址:PDF下载地址
精美图片

Neural Network Learning(ISBN=9780521118620)书籍详细信息
- ISBN:9780521118620
- 作者:暂无作者
- 出版社:暂无出版社
- 出版时间:2009-01
- 页数:暂无页数
- 价格:217.80
- 纸张:胶版纸
- 装帧:平装
- 开本:32开
- 语言:未知
- 丛书:暂无丛书
- TAG:暂无
- 豆瓣评分:暂无豆瓣评分
内容简介:
First published in 1999, this book describes theoretical
advances in the study of artificial neural networks. It explores
probabilistic models of supervised learning problems, and addresses
the key statistical and computational questions. Research on
pattern classification with binary-output networks is surveyed,
including a discussion of the relevance of the Vapnik-Chervonenkis
dimension, and calculating estimates of the dimension for several
neural network models. A model of classification by real-output
networks is developed, and the usefulness of classification with a
'large margin' is demonstrated. The authors explain the role of
scale-sensitive versions of the Vapnik-Chervonenkis dimension in
large margin classification, and in real prediction. They also
discuss the computational complexity of neural network learning,
describing a variety of hardness results, and outlining two
efficient constructive learning algorithms. The book is
self-contained and is intended to be accessible to researchers and
graduate students in computer science, engineering, and
mathematics.
书籍目录:
1. Introduction
Part I. Pattern Recognition with Binary-output Neural
Networks:
2. The pattern recognition problem
3. The growth function and VC-dimension
4. General upper bounds on sample complexity
5. General lower bounds
6. The VC-dimension of linear threshold networks
7. Bounding the VC-dimension using geometric techniques
8. VC-dimension bounds for neural networks
Part II. Pattern Recognition with Real-output Neural
Networks:
9. Classification with real values
10. Covering numbers and uniform convergence
11. The pseudo-dimension and fat-shattering dimension
12. Bounding covering numbers with dimensions
13. The sample complexity of classification learning
14. The dimensions of neural networks
15. Model selection
Part III. Learning Real-Valued Functions:
16. Learning classes of real functions
17. Uniform convergence results for real function classes
18. Bounding covering numbers
19. The sample complexity of learning function classes
20. Convex classes
21. Other learning problems
Part IV. Algorithmics:
22. Efficient learning
23. Learning as optimisation
24. The Boolean perceptron
25. Hardness results for feed-forward networks
26. Constructive learning algorithms for two-layered networks.
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
在线阅读地址:Neural Network Learning(ISBN=9780521118620)在线阅读
在线听书地址:Neural Network Learning(ISBN=9780521118620)在线收听
在线购买地址:Neural Network Learning(ISBN=9780521118620)在线购买
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
编辑推荐
Contains results that have not appeared in journal papers or
other books ? Presents many recent results in a unified framework
and, in many cases, with simpler proofs ? Self-contained: it
introduces the necessary background material on probability,
statistics, combinatorics and computational complexity ? It is
suitable for graduate students as well as active researchers in the
area (parts of it have already formed the basis of a graduate
course)
书籍真实打分
故事情节:7分
人物塑造:3分
主题深度:7分
文字风格:5分
语言运用:5分
文笔流畅:8分
思想传递:5分
知识深度:5分
知识广度:4分
实用性:8分
章节划分:7分
结构布局:5分
新颖与独特:3分
情感共鸣:5分
引人入胜:4分
现实相关:3分
沉浸感:5分
事实准确性:3分
文化贡献:9分
网站评分
书籍多样性:4分
书籍信息完全性:6分
网站更新速度:7分
使用便利性:6分
书籍清晰度:9分
书籍格式兼容性:5分
是否包含广告:3分
加载速度:7分
安全性:4分
稳定性:6分
搜索功能:7分
下载便捷性:4分
下载点评
- 微信读书(287+)
- 超值(629+)
- 内涵好书(303+)
- 四星好评(123+)
- 图文清晰(347+)
- 无缺页(117+)
下载评价
网友 饶***丽:下载方式特简单,一直点就好了。
网友 曹***雯:为什么许多书都找不到?
网友 康***溪:强烈推荐!!!
网友 国***芳:五星好评
网友 陈***秋:不错,图文清晰,无错版,可以入手。
网友 石***致:挺实用的,给个赞!希望越来越好,一直支持。
网友 隗***杉:挺好的,还好看!支持!快下载吧!
网友 曾***玉:直接选择epub/azw3/mobi就可以了,然后导入微信读书,体验百分百!!!
网友 薛***玉:就是我想要的!!!
网友 堵***洁:好用,支持